Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Climate variability over glacial-interglacial timescales is not well characterized in the tropical Andes, and paleoclimate records are lacking in this region. To offset this gap in knowledge, we analyzed organic compounds from sediment cores from Lake Junin (the Peruvian Andes) to better understand climate variability in the region since the LGM. We measured the δD of long and mid-chain n-alkanes (nC29 – terrestrial vegetation and nC23 – aquatic vegetation) to characterize changes in the intensity of the South American Summer Monsoon (SASM) and evaporative enrichment of lake water. We also measured the δ13C of these compounds to better understand the hydrology of the region and constrain the sources of organic matter through time. Additionally, we used the fractional abundances of brGDGTs to estimate changes in temperature over the same time period. Our results suggest that SASM intensity is controlled by insolation in the southern hemisphere. During the late Pleistocene, the δD of both nC29 and nC23 are relatively D-depleted indicating a wetter time period. This is followed by progressive D-enrichment of both nC29 and nC23 which suggests increasing aridity until the Holocene. The early Holocene is characterized by a decoupling between the δD of nC23 and nC29.The δD of nC23 becomes relatively more D-enriched, matching trends in a carbonate oxygen isotope record from Lake Junin, indicating increased lake-water evaporation during this time. Finally, the late Holocene is characterized by a return to wetter conditions. The δ13C of both nC29 and nC23 further confirms the hydrologic history of this region, while shedding light on vegetation dynamics. During the Pleistocene, the δ13C of both n-alkanes suggests DIC uptake, but at the start of the Holocene they diverge, showing two distinct plant communities, one entirely aquatic and one entirely terrestrial. Our brGDGT-based temperature reconstruction shares similar trends with alkenone-based SST reconstructions off the coast of Peru, indicating a consistent regional climate signal.more » « lessFree, publicly-accessible full text available December 9, 2025
- 
            none (Ed.)Abstract The South American monsoon is central to the continent’s water and energy cycles, however, the relationships between the monsoon, regional water balance, and global climate change is poorly understood. Sediment records at Lake Junín (11°S, 76°W) provide an opportunity to explore these connections over the last 650 ka. Here, we focus on two interglacials, the Holocene (11.7–0 ka) and MIS 15 (621–563 ka), when sediment proxies suggest rapid regional hydroclimate fluctuations occurred. Clumped isotope distributions of lake carbonates reveal that interglacial water temperatures were similar to present, though analytical limitations preclude detecting the small temperature differences expected in the tropics (<2 °C). Combining the reconstructed water temperatures with carbonate oxygen (δ18O) and triple oxygen (Δ′17O) isotope values, we reconstruct precipitation δ18O values and lake water Δ′17O values. Precipitation δ18O values, a proxy of monsoon strength, range from -18.6 to -12.3 ‰ with lower values reflecting a stronger monsoon. Lake water Δ′17O values are -14 to 43 per meg and indicate the extent of lake water evaporation; lower values reflect a higher proportion of evaporation to inputs (i.e., more negative P-E). The precipitation δ18O and lake water Δ′17O values from both interglacials vary with the pacing of local summertime insolation, which follows an orbital pacing. These data document the close connection between Andean water balance, the South American monsoon, and global climate. Further, we analyze the relationship between precipitation δ18O and insolation, and we find that the relationship is consistent among interglacials, suggesting a similar response of the monsoon to orbital forcings over time. In contrast, while lake water Δ′17O and insolation are also correlated during both interglacials, water balance was overall more positive during MIS 15 than the Holocene. This suggests that either other global forcings or local basin dynamics can also contribute to water balance at Lake Junín. Together, these data provide new evidence of the connections between global climate, monsoon strength, and regional water balance.more » « lessFree, publicly-accessible full text available December 9, 2025
- 
            none (Ed.)Abstract The termination of the last glacial period is marked by the northward migration of the ITCZ and the weakening of the South American Summer Monsoon (SASM). The transition between the wetter glacial period and the more arid Holocene period across the South American continent is punctuated by several abrupt millennial-scale tropical hydroclimatic events. While the Northern Hemisphere temperature forcing of these millennial-scale events is generally accepted, recently, equatorial forcing mechanisms have been put forward. In particular, the dipole between northeastern Brazil and the western Andes of Peru is absent during Heinrich 1, with wet conditions recorded in both regions. To explain this anomalous atmospheric behavior, researchers have suggested changes in the ENSO and Walker circulation over South America and questioned whether the ‘amount effect’ relationship between δ18O and precipitation persists through time. To better resolve tropical hydroclimate changes over the last glacial termination, more robust paleoclimate proxies are needed. Here, we present a new paleo-precipitation reconstruction based on trace metal (Mg/Ca, Sr/Ca, and Ba/Ca) and isotope (δ18O and δ13C) speleothem records from Antipayarguna cave in the Peruvian Andes (3800 masl). Our records date from 2,600 to 4,700 and 7,700 to 19,000 years BP, with an average age resolution of 44 years. These records overlap the previously published speleothem records from nearby Pacupahuain and Huagapo caves. The Antipayarguna δ18O data are highly correlated with southern hemisphere summer insolation and the Huascaran ice core δ18O record. The Antipayarguna trace metal ratios and δ18O isotope values correlate well over most of the record, suggesting that the δ18O at our site reflects the amount of local precipitation. However, at the end of the Younger Dryas (11.5-10.3 ka) and Heinrich Stadial 1 (16.4-14.9 ka), there is a decoupling of these proxies. These anomalies may be due to changes in δ18O caused by shifts in moisture source region or precipitation condensation factors (e.g. convergence level or subcloud evaporation). Alternatively, this could be due to a change in trace metal sources. We explore potential causes for these brief decoupling events through comparison with other paleoclimate records.more » « lessFree, publicly-accessible full text available December 9, 2025
- 
            Climate variability at glacial-interglacial timescales is not well characterized in the tropical Andes, and paleoclimate records are lacking in this region. Lake Junin, in the Peruvian Andes, offers a unique and continuous paleoclimate archive that spans the last 700,000 years. Here, we use organic compounds to characterize climate variability in the region since the Last Glacial Maximum. First, we determined the preservation of organic matter in the sediments using the Carbon Preference Index (CPI), which suggests that n-alkanes have not been altered, and their H isotope composition can be used as paleo precipitation proxies. To reconstruct the isotopic composition of lake water, biomarkers from Eustigmatophyte algae (long chain diols) and diatoms (loliolide/isololiolide) have been identified. This will allow us to better understand aridity and evaporation as well as lake water inputs through time. Additionally, we will use the changes in n-alkane chain length distributions to constrain changes in terrestrial plants (long chain n-alkanes) and aquatic macrophytes (mid-chain n-alkanes) as a potential proxy for changes in lake level as a response to climate. Finally, temperature will be reconstructed using the distributions of br-GDGTs (branched glycerol dialkyl glycerol tetraethers). Using these set of proxies, we aim to characterize climate variability during the Holocene and the end of the LGM in the context of teleconnections between the South American Summer Monsoon and global climate patternsmore » « less
- 
            The frequency and intensity of El Niño events reconstructed from 3 independent sedimentary sequencesContinuous archives of the El Niño Southern Oscillation (ENSO) spanning multiple millennia are rare, as few geologic records faithfully preserve evidence of sub-decadal climate variability over long timescales. Different proxy archive types –such as lake sediments, foraminifera, tree-rings, and corals—have their own unique sensitivities to the climate system and can thus be difficult to intercompare. The sedimentary sequence from Laguna Pallcacocha, Ecuador, represents one of the most widely cited Holocene-scale ENSO reconstructions. Hundreds of mineral-rich flood laminae result from eastern Pacific El Niño events, when convective rainstorms drive erosion and terrigenous sediment transport in the Laguna Pallcacocha watershed. This reconstruction, however, is tangibly different from other ENSO proxy records as well as flood stratigraphies from proximal lakes. The watersheds of these nearby lakes have markedly different landscape characteristics, suggesting that the intensity of storms which generate flood deposits differ between each watershed. Thus, an integrated analysis of these three separate records helps constrain the frequency of paleo-ENSO events of different magnitudes. While moderate El Niño events may have been most frequent approximately 1000 years BP, particularly intense El Niño’s occur more frequently during the subsequent Little Ice Age (1450-1850 CE), consistent with tree-ring based reconstructions of ENSO amplitude and foraminiferal records of high-intensity eastern Pacific warming. A widely reported minima in El Niño frequency between approximately 7-4 kyr BP is a prominent feature in Laguna Pallcacocha record. This minima is not present, however, in the high-intensity flood stratigraphies from the other two lakes, which align more closely with ENSO amplitude records derived from speleothems and corals. These findings highlight the value of integrating evidence from multiple paleoclimate archives in ENSO reconstructions.more » « less
- 
            This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Lake. The data include parameters of paleolimnology (hydrogen isotopes) with a geographic location of Peru. The time period coverage is from 42395 to -59 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available